
Toward a Fully De-identified Biomedical Information Warehouse

Jianhua Liu, PhD; Selnur Erdal, DDS, MS; Scott A. Silvey;

Jing Ding, PhD; John D. Riedel, BS; Clay B. Marsh, MD; Jyoti Kamal, PhD

The Ohio State University Medical Center, Columbus, Ohio

ABSTRACT:
The Information Warehouse at the Ohio State

University Medical Center is a comprehensive

repository of business, clinical, and research data from

various source systems. Data collected here is a

valuable resource that facilitates both translational

research and personalized healthcare. The use of such

data in research is governed by federal privacy

regulations with oversight by the Institutional Review

Board. In 2006, the Information Warehouse was

recognized by the OSU IRB as an “Honest Broker” of

clinical data, providing investigators with de-identified

or limited datasets under stipulations contained in a

signed data use agreement. In order to streamline this

process even further, the Information Warehouse is

developing a de-identified data warehouse that is

suitable for direct user access through a controlled

query tool that is aimed to support both research and

education activities. In this paper we report our

findings on performance evaluation of different de-

identification schemes that may be used to ensure

regulatory compliance while also facilitating practical

database updating and querying. We also discuss how

date-shifting in the de-identification process can

impact other data elements such as diagnosis and

procedure codes and consider a possible solution to

those problems.

BACKGROUND
After the adoption of electronic medical record

(EMR) systems in an academic medical center in

support of clinical operations, data from the EMR

becomes a valuable resource for clinical and

translational research
1
. This data, combined with other

information such as genomic data, lays the foundation

for personalized healthcare
2
. The use of patient records

in research and education is governed by federal

privacy regulations
3
 (such as HIPAA and the Common

Rule), that constrain the use of identifiable patient

information in research activities. Investigators can

obtain identifiable data for research use after an

Institutional Review Board (IRB) approval is obtained.

Obtaining an IRB approval, however, can be a time

consuming process that may at times discourage

research activities.

Therefore, to support both research and education,

it is desirable to have a completely de-identified

database (DDB) that is similar in data structure to the

identifiable version (IDB). This DDB must be HIPAA
AMIA 2009 Symposium Pr
compliant in terms of the masking or removal of

Protected Health Information (PHI), and should ideally

be capable of defending against re-identification

attacks. Structural similarity between IDB and DDB is

beneficial to ensure that previously developed

applications against the IDB will be applicable on the

DDB with minimal modification.

In order to support research and education

activities using medical records, efforts have been

made to de-identify clinical data in both structured
4,5,6,7

and unstructured
4,8,9

 data. Methods have been

described using a hash function to build a de-identified

bio-repository
5
. Other methods have been reported on

either de-identification schemes
10
 or trying to guarantee

anonymity
11
. De-identification of medical free text has

been studied and published with great progress in the

past years.

In preparation of building a de-identified

Information Warehouse
12
 (IW) at the Ohio State

University Medical Center (OSUMC), we report here

our evaluation of the impact of different de-

identification methods on database performance and

related issues. This resource is intended to provide

services to investigators and educators under the

OSUMC IRB approved Honest Broker Protocol.

THE OSUMC HONEST BROKER PROTOCOL

The IW’s “Honest Broker” status as a provider of

de-identified clinical data for research purposes was

approved as an annually reviewed procedural protocol

by the Ohio State University Biomedical IRB in April

2006. Under this protocol (the Honest Broker

Protocol
13
, or HBP), a researcher typically signs a data

use agreement with the IW when they request a de-

identified or limited dataset. IW data analysts prepare

the resulting data by removing PHI and deliver the data

set as a bundle of coherently linked files to the

researcher. In a de-identified dataset, dates are

recorded as time intervals from a patient’s first visit.

Actual dates, zip codes, and ages over 90 can be

included in the limited dataset
3
.

To safeguard against accidental identification,

resulting datasets with less than 25 records are not

delivered, only aggregate numbers are reported to the

requestor. Re-queries based on previous results are not

allowed. De-identified codes are changed between

datasets to inhibit longitudinal study of particular

subjects. Furthermore, should an inadvertent

identification occur, the Data Use Agreement stipulates
oceedings Page - 370

that the investigator will immediately seek IRB

oversight.

METHOD AND RESULTS
The planned system architecture is depicted in

Figure 1. Another instance of IDB is replicated and

updated using Change Data Capture for near real-time

update (IDB2). IDB2 serves as a backup for IDB as

well as a de-identified data feed for DDB. Original

linkage tables (mapping between identified and de-

identified codes) are maintained in IDB2 only. Only

secondary mapping (see method sections below) will

be stored in DDB when necessary.

Figure 1: System Architecture for building a de-identified

Information Warehouse.

This work is to address two specific issues that are

required by the HBP
7
: complete de-identification of

data and inhibiting the use of de-identified data for

longitudinal study. To prevent longitudinal study (akin

to human subject research), we require a viable

mechanism to periodically generate an entirely new set

of DID’s throughout the DDB. This process must

perform well enough to complete within an overnight

session even as the warehouse continues to grow in

size throughout the foreseeable future. Query

performance of the DDB is also a consideration as the

system must remain as practical as the IDB for

performing complex queries and data mining tasks.

With these constraints in mind, we consider a variety

of possible de-identification mechanisms for the DDB

and seek to evaluate the relative performance impacts

of each method. We also consider mechanisms for

date shifting to preserve inter-event time intervals in

the DDB and explore how this can impact some

analysis problems.

For de-identification of structured data, we choose

to perform tests on identifiers such as Medical Record

Number (MRN), encounter number (ENC), and

accession number (ACSN) that can be used to uniquely

identify a patient. The following de-identification

schemes are tested:

1. Secure Hash Algorithm (SH) – identifier (ID) is

hashed into a unique string serving as the de-

identified identifier (DID)
15
. For testing purpose,

SHA-1 algorithm is used to generate the 40-byte

long DID. Subsequent database update will not

change the DID. Therefore, the DID will keep

constant for the life of the DDB.

AMIA 2009 Symposium Pr
2. Random Mapping (RM) – actual identifier code

(ID) is directly mapped to a random number (10

digits) as the DID. This process produces a DDB

that is classified as a “coded” dataset and therefore

is subjected to more restricted use restrictions for

research purposes
3
. This DID can only be changed

by a complete rebuild of the DDB or a re-mapping

followed by an update.

3. Hashing-Mapping (HM) – As the combination of 1

and 2 above, the ID is first hashed into a unique

string and then each string is assigned a 10 digit

random number as the DID. This DID can

subsequently be changed by DDB update or

rebuild to meet the requirement of inhibiting

longitudinal studies.

4. Hashing-Mapping-and-Re-Mapping (HMM) – ID

is first hashed into a string, followed by mapping

the string to a permanent primary unique random

number. This in turn is mapped to a secondary

unique random number that is transient between

re-coding cycles of the DDB. Both random

numbers are 10 digits long. Data in DDB is stored

with the primary number and query results are

shown with the secondary number serving as the

DID through database utilities.

We intend to compare RM and SH for expense on

the use of a hashing function and use SH as a standard

to evaluate the performance of the HM and HMM

methods. Query execution time is gathered using

Oracle’s SQL Trace Facility and TKPROF utility.

CPU time for query execution is collected 4 times, with

the first data point discarded and the other 3 recorded

and averaged.

All performance tests are performed on a Sun Fire

V445 server running Solaris 10 and Oracle Database

11gR1. Secure Hash Algorithm SHA-1 is used in this

work. For both SHA-1 and the random number

generator, Oracle’s DBMS.Crypto toolkit is used. All

tables are created with table logging turned off.

To test SH, a database function is created to take

an ID as input and then output the hashed string as the

DID. Tables containing mappings of MRN-DID and

HashedString-1
st
DID-2

nd
DID are created for RM and

HMM, respectively. HM shares the same table with

HMM by using the HashedString-1
st
DID pair in table.

Table creation is evaluated by using the following SQL

statements:

SH:
INSERT INTO dest_table

SELECT sha_1(mrn) AS mrn, other_fields
 FROM orig_table;

oceedings Page - 371

RM:
INSERT INTO dest_table
SELECT mapping.did, orig.other_fields

 FROM orig_table, mapping_table
 WHERE orig.mrn=mapping.mrn;

HM/HMM
INSERT INTO DEST_TABLE
SELECT mapping.did, orig.other_fields

 FROM orig_table, mapping_table
 WHERE sha_1(orig.mrn)=mapping.hash_string;

Table 1: Table Creation Time for initial loading of

100K and 1 Million records (seconds)

Rec. Method 1 2 3 Average

RM 9.58 9.66 9.53 9.59

SH 15.58 16.02 16.11 15.90 100K

HM/HMM 15.30 15.99 15.46 15.58

RM 77.18 78.16 77.11 77.48

SH 161.69 161.09 161.26 161.35 1M

HM/HMM 149.76 148.22 148.21 148.73

Table 2: Data Insertion Time for adding 21K Rows (in

seconds). Data are collected for both with

and without table index on the de-identified

column.

Indexing Method 1 2 3 Average

RM 5.33 3.51 5.39 4.74

SH 4.93 4.85 4.54 4.77
without

Index
HM/HMM 4.37 4.40 4.36 4.38

RM 4.27 4.06 3.63 3.99

SH 4.85 5.39 5.52 5.25
With

Index
HM/HMM 4.66 4.89 4.79 4.78

Table 3: Query time (in seconds) for fetching data for

the same10K identifiers.

Method Obs. 1 Obs. 2 Obs. 3 Average

SH 1.78 1.76 1.77 1.77

RM/HM 0.51 0.51 0.52 0.51

HMM 0.90 0.90 0.91 0.90

Table 1 shows the table creation time for initial load

of 100K and 1 million records using SH, RM, and HM

methods to de-identify one column.

Using similar SQL statements shown above, data

insertion performance is tested with and without index

on the ID column. Table 2 shows time by inserting

21K records into a table with 1 million rows using

different de-identification schemes. 21K was chosen

based on average daily insertions into the IW

production lab test table over the past 5 years.

We choose to use a simple query that involves the

join of 2 tables on index IDs to evaluate query

performance.

SELECT count(1)
 FROM table_1, table_2

 WHERE table_1.did = table_2.did;

AMIA 2009 Symposium Pr
In the case of HMM, a view is used instead of an

actual table. Table 3 shows query time on a query that

joint select from a table with 10K identifiers and a

testing table of 1 million rows over the indexed DID

columns from both tables. For HMM, a view is created

to replace the permanent ID with the secondary ID and

query time test is performed using the view.

HM and HMM share the same table creation and

insertion time, while RM and HM have similar query

performance. This is due to the fact that these

methods involve exactly the same database operations

in the two categories, respectively.

DISCUSSION
Initial Data Loading Time

From Table 1 it is clear that data loading time is

twice as fast in RM as in SH and HM/HMM. This is a

cost due to the use of a secure hash algorithm. Also

observed is that HM/HMM, although adding a

mapping step on SH, performs better than SH. We

believe that this is due to the difference between

inserting a 40-byte string and a 10 digit number into

the database. As with most algorithms, the database

engine handles numbers more efficient than dealing

with strings.

Data Insertion Time

Inserting a record does not display significant

differences among the tested methods for an average

daily load of 21K rows. Also noted is that there is no

significant time difference in inserting into a table with

or without indices that are already built on the table.

This observation is in agreement with the general

database practice that table index is not rebuilt or

updated during insertion.

Data Update

One of the potential advantages of using HM is

that DID can be refreshed using an update process.

However, tests results showed that a full table update

on an ID column is always much slower than a table

truncate and re-build process. For example, inserting

100K records took 9.24 seconds to finish while

updating 100K records on an indexed numeric DID

(10% update) lasted 104.19 seconds. This process can

be costly as the DDB grows possibly impairing

availability of the system for customers.

HMM provides another mechanism for such an

update: one simply needs to generate a new set of

secondary ID’s. However, as can be seen in Table 3,

this process imposes a 78% penalty ((0.90-0.51)/0.51)

on our query test case.

Data Deletion

Data deletion is not tested in this study because

deletion rarely occurs in a de-identified data repository.

For sporadic row deletions it is anticipated that this

operation would not produce significant impact.
oceedings Page - 372

Query Performance

Since database queries rely on an index for

performance, it is no surprise that a query that makes

use of an index on a column of numerical values

always outperforms the same query that uses an index

on a column of categorical values. Therefore, it is

reasonable to see that SH recorded slowest query

execution time, more than 3 times that of the best

performer (RM/HM) on a simple 2 table join on

indexed DID columns.

The use of a view in HMM caused it to be 78%

slower than direct query in RM and HM. However,

this is still almost twice as fast as in SH on the same

test query. It is postulated that more table joins, which

is typical in data analysis, will widen the performance

gap among all methods tested here.

Longitudinal Study Prevention:

In order to prevent data re-query using previous

query results and to inhibit longitudinal study using the

DDB, the DID used in DDB has to change periodically.

With the SH method, change of the DID involves a

change of the hashing function (e.g., a new “salt”) and

a complete rebuild of the DDB, which is impractical.

The RM method requires the generation of a new set of

DIDs, thus having the same limitation as in SH

method. In the HM method, the random number DID,

in theory, can be re-generated and the DDB updated

without a complete DDB rebuild. However, in

practice, the update takes a prohibitively long time,

rendering it impractical. In the HMM method, an

update for a new set of DID is simplified so as to re-

generate the secondary random numbers. This update

can be performed any time when no query is being

executed in the database.

Date Shifting

Date shifting has been proposed and used in other

implementations of various databases that support de-

identification. For example, Roden et al reported on

shifting a random number of days between 1-364 days

to the past
4
. However, a date in DDB shifted in such a

manner may complicate other clinical data such as

diagnosis and procedure codes. Codes that have

changed over time will no longer be valid for some of

the patients. For example, if a patient’s diagnosis code

is assigned as “A” right after the new code change

(from “B” to “A”) takes effect, shifting this patient’s

visit date to the past will result in the wrong code (“B”)

being associated to this visit. Replacing date with a

time delta from a patient’s first visit will solve this

problem but it is considered to be too prohibitive to

some research work that relies on dates.

One possible way of solving this problem is to add

a new field to the table that uses codes to store either

the code descriptions or effective ending date (EED)

for the code. The use of EED is possible as long as
AMIA 2009 Symposium Pr
EED is not date-shifted. Date-shifted EED can

obviously be used to re-calculate real patient visit date.

With this mechanism, the DDB will increase in size but

impacts of date shift can be minimized. Based on our

query test results, the use of EED (effectively a number

instead of a long string inside a database) would yield

better performance but the use of such a date can be

confusing when two dates in the same record show one

date being shifted to the past and the other not.

Shifting date by any unknown number of days

would be sufficient for the purpose of de-identification
4

alone. We tested on a shift using a patient’s birthday.

This is based on the observation that it is unlikely that a

patient will have a hospital visit before his/her

birthday. By shifting each patient’s birthday to a

common date, i.e., 1/1/1900, all visit dates will appear

to be random while visit intervals are preserved, thus

de-identified.

Patients of age over 90 at time of visit can be

further time-adjusted to make his/her age 90,

effectively creating an age group of 90. Patients who

are less than 18 years of age at time of visit will be

excluded from DDB.

Other data elements

The masking of other data elements will follow

published methodologies that are HIPAA and HBP

compliant
4,5
. For example, address will be modified to

keep only the state and the first 2 digits of a zip code.

Medical free-text reports will not be included in the

DDB at this time. We feel that more evaluation is

necessary on various text de-identification packages

before an update to HBP can be made.

Re-identification

All schemes evaluated in this study are susceptible

to re-identification attacks
11
. Clearly, published

mechanisms describing re-identification attacks
14
 do

apply to this DDB implementation due to the inclusion

of data elements such as gender, ethnicity, and clinical

information such as diagnosis and procedure codes.

Since the purpose of DDB is not to provide

anonymized data, re-identification is not addressed in

this study.

CONCLUSION

We reported here the undesirable effect of date

shifting on data integrity of a DDB and suggested one

possible solution to preserve the meaning of coded

columns (e.g., diagnosis) against possible changes in

the meaning of a code. We have also evaluated various

de-identification mechanisms and their impact on

different database operations.

The SH mechanism has the advantage of being

relatively straight forward in design, closely preserving

data model similarity between the IDB and the DDB.

Moreover, this design has been deployed in production

at other institutions for some time and has been
oceedings Page - 373

demonstrated to be effective. However, query and

update performance is adversely impacted in this

design as this process replaces a short integer key with

a long character string that is often a join key in

queries. Furthermore, more robust hashing algorithms

that generate longer keys (SHA-512, for example) will

provide better security but will impede query and

update performance even more. The RM mechanism

has the advantage of not impacting query performance

when compared to the IDB as the new keys will be the

same size and type as the original patient identifiers.

However, DDB’s produced by both SH and RM would

be considered “coded” datasets by federal privacy

regulations
3
, leading to more confined use restrictions

for research purposes.

Regenerating DID’s with the HM mechanism will

require an update transaction on every row of every

table with an ID or will require a complete retransfer of

the original IDB data into the DDB. Therefore, as data

volume grows exponentially, we would expect this

mechanism to be challenging to keep within a

reasonable update time window. The HMM

mechanism demonstrated the most practical

performance when recoding the DDB since it requires

update transactions per ID on only a single table in the

entire data warehouse (the code map). Moreover,

query performance of this model benefited from using

a 10-digit integer as the key instead of a string several

times that size (as in the pure hashing key approach).

However, HMM suffered losses in query performance

against HM due to the introduction of an extra database

view even though its query performance is still

advantageous over SH.

 If possible, one would initially start with a DDB

using HM for de-identifiers and subsequent updates

using table truncate and re-load because this scheme

provides the best query performance. Once the DDB

grows to a size that prohibits such an update, or when

demands on DDB availability render prolonged down

times impractical, it can be easily converted into HMM

by adding a secondary de-identifier to each identifier.

This secondary de-identifier can be used to build a

database view. Performance of HMM can be improved

dramatically by adding a group of caching storage

disks (CSD) and building materialized views (MVs) on

the CSD’s over the original views and queries are

written using the original views. Queries to the DDB

will use the MVs whenever possible but can also fall

back to use the original views when MVs are not

available. MVs need to be rebuilt every time

secondary de-identifiers are refreshed. CSD, since it

only stores the MVs and not a critical component,

should be fast storage media and need not have

redundancy and content backup.

REFERENCES:
AMIA 2009 Symposium Pro
1. Powell J, Buchan I. Electronic health records should

support clinical research. J Med Internet Res. 2005

14;7(1):e4.

2. Langheier JM, Snyderman R. Prospective medicine:

the role for genomics in personalized health

planning. Pharmacogenomics. 2004, Vol. 5, 1:1-8.

3. Office for Human Research Protections (OHRP),

U.S. Department of Health and Human Services.

Guidance on research involving coded private

information or biological specimens. October 2008.

4. Roden DM, Pulley JM, Basford MA, Bernard GR,

Clayton EW, Balser JR, Masys DR. Development

of a Large-Scale De-Identified DNA Biobank to

Enable Personalized Medicine. Clinical

Pharmacology & Therapeutics (2008); 84, 3, 362-

369

5. Lyman JA, Scully K, Harrison Jr JH. The

Development of Health Care Data Warehouses to

Support Data Mining. Clinics in Laboratory

Medicine. 2008. Vol.28, 1:55-71

6. Wylie JE, Mineau GP. Biomedical databases:

protecting privacy and promoting research. Trends

Biotechnol 2003;21(3):113–6.

7. de Moor GJ, Claerhout B, de Meyer F. Privacy

enhancing technologies: the key to secure

communication and management of clinical and

genomic data. Methods Inform Med 2003;42:148–

53.

8. Berman JJ. Concept-Match Medical Data

Scrubbing. Archives of Pathology and Laboratory

Medicine: Vol. 127, No. 6, pp. 680–686.

9. Gardner J. Xiong L. HIDE: An Integrated System

for Health Information DE-identification. In 21st

IEEE International Symposium on Computer-Based

Medical Systems (CBMS), June, 2008.

10. Kohane IS, Dong H, Szolovits P. Health

information identification and de-identification

toolkit. Proc AMIA Symp. 1998; 356–360.

11. Emam KE, Jabbouri S, Sams S, Drouet Y, Power

M. Evaluating Common De-Identification

Heuristics for Personal Health Information. J Med

Internet Res. 2006 Oct–Dec; 8(4): e28.

12. Kamal J. et al, Innovative applications of an

enterprise-wide information warehouse. AMIA

Annu Symp Proc. 2008 Nov 6:1134.

13. Silvey SA, Schulte J, Smaltz DH, Kamal J. Honest

broker protocol streamlines research access to data

while safeguarding patient privacy. AMIA Annu

Symp Proc. 2008 Nov 6:1133.

14. Malin B, Sweeney L. How (not) to protect genomic

data privacy in a distributed network: using trail re-

identification to evaluate and design anonymity

protection systems. Journal of Biomedical

Informatics 2004. 37:179–192.

15. Gulcher JR, Kristjansson K, Gudbjartsson H,

Stefansson K. Protection of privacy by third-party

encryption in genetic research. Eur J Hum Genet

2000; 8:739–42.
ceedings Page - 374

